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Positional preferences for para benzylic oxygenation of tetrahydronaphthalenes by 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ)-aqueous dioxane were investigated by comparing the tetralone
products from 6-hydroxy-7-methoxy- and 6-acetoxy-7-methoxy-1,2,3,4-tetrahydronaphthalene. The
directing influence by an aromatic substituent on para benzylic oxygenation was in the order OH
> OMe > OAc. Consistent with this finding were results obtained from lignan analogues. Treatment
of (+)-â-conidendryl alcohol with DDQ in dry dioxane resulted in the intramolecular bridging by
one of two primary hydroxy groups to the benzylic position, giving an oxabicyclo[3.2.1]octane. Similar
treatment of (+)-dimethyl-â-conidendryl alcohol resulted in bridging by the alternate primary
hydroxyl group to the benzhydrylic carbon giving an isomeric oxabicyclo[3.2.1]octane.

We have been interested in developing methods for
introducing oxygen selectively and efficiently at the
benzylic positions of 1,2,3,4-tetrahydronaphthalenes
(THN), including a number of lignans incorporating this
particular structural feature. Direct benzylic oxygen-
ations of simple 6-hydroxy- and 6-methoxytetrahydro-
naphthalenes have been achieved using 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ) in the presence of
water or methanol.1 We observe that treatment of
the dissymmetrically substituted THN, 1,2 with DDQ-
water results in a 70% yield of known tetralone 2.3 This
conversion demonstrated the preference for oxygena-
tion occurring at the methylene carbon para to the
hydroxy group, rather than para to the methoxy group,
and marks the terminal carbon involved in inter-
mediate quinone methide formation.4-6 However, the
preferred position for oxygenation can be switched to
the methylene para to the methoxy group. This change
was achieved by acetylating the hydroxy group of 1,
prior to DDQ-water treatment, for the purpose of
deactivating the hydroxy group.7 Thus, 3 yielded acetoxy-
tetralone 4 in 62% yield. Competitive formation of
2-acetoxy-3-methoxynaphthalene (23%) was anticipated
on the basis of known dehydrogenations by other chlorine-
substituted 1,4-benzoquinones.8 Acetoxytetralone 4 was
hydrolyzed, and the resulting hydroxytetralone 53 exhib-
ited physical properties agreeing with the assigned
structure and contrasting with those of its positional
isomer 2.

In contrast to the simple THN 1, its lignan analogue
(-)-â-conidendrin9 (Figure 1) gave the naphthalene de-
hydroconidendrin in 44% yield as the only isolable
product from DDQ-water treatment. Similarly, dim-
ethyl-â-conidendrin10 gave dimethyldehydroconidendrin
in 53% yield.10 However, dehydrogenation as the prin-
cipal outcome was replaced by an intramolecular
mode of oxygenation through treatment of (+)-â-coni-
dendryl alcohol (6, Scheme 1) in anhydrous dioxane
with DDQ. Oxymethylene bridging to the benzylic
carbon of 6 occurred giving 7 (59%). The structure was
consistent with the physical data including the HMBC.
Oxymethylene bridging switched from the benzyl to
the benzhydrylic position when the phenolic hydroxy
groups of 6 were replaced by methoxy groups, as dem-
onstrated by the conversion of 810 to 9 (70%) using
DDQ in CH2Cl2. Persistence of some competitive dehy-
drogenation was evident in the formation of the
naphthalene 10 (2%). Compound 9 was an inseparable
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mixture of near-equimolar amounts of rotational diaster-
eomers, as evidenced by pairs of signals in the 13C
NMR.

The demonstrated influence of a C-6 aromatic sub-
stituent on para benzylic oxygenation of a THN is in the
order OH > OCH3 > OAc. This finding allows for
selectivity in DDQ-promoted oxygenations of benzylic
positions through appropriate, prior blocking of a para
phenolic hydroxy group. This was demonstrated by the
simple disubstituted THNs and the more complex (+)-
â-conidendryl and dimethyl-â-conidendryl alcohols.

Experimental Section

Reaction Procedures. All reactions with DDQ were
conducted under N2 at 25 °C. (a) Reactions of THNs 1 and
3. DDQ in anhydrous dioxane (<0.01% H2O) was added

dropwise to the THN in ∼5% aqueous dioxane. Processing the
reaction mixture involved the following steps in succession:
filtration if required through sintered glass, evaporation of the
solvent from the filtrate, and partitioning of the residue
between EtOAc and 5% aqueous NaHCO3. The EtOAc layer
was washed with proportional amounts of 5% aqueous NaH-
CO3, H2O, and brine. The residue obtained on removal of the
EtOAc at reduced pressure was chromatographed. (b) Reac-
tion of (+)-â-Conidendryl Alcohol, 6. The reaction proce-
dure and processing were the same as described in part a,
except 6 was dissolved in anhydrous dioxane. (c) Reaction
of (+)-Dimethyl-â-conidendryl Alcohol, 8. DDQ in CH2-
Cl2 was added dropwise to 8 in CH2Cl2. Processing solvent
Et2O replaced EtOAc.

Conversion of 6-Hydroxy-7-methoxy-1,2,3,4-tetrahy-
dronaphthalene (1)2 to Tetralone 2. DDQ (231 mg, 1.02
mmol) in 2 mL of dry dioxane and 1 (89 mg, 0.5 mmol) in 0.5
mL of aqueous dioxane gave after 3 h and MPLC (EtOAc/
hexane 1:1) compound 2 (68 mg, 71%): mp 117-119 °C (lit.3
mp 115-118 °C); IR (film, NaCl disk, cm-1) 3338, 1664; 1H
NMR (300 MHz, CDCl3) δ 2.07 (m, 2), 2.57 (t, J ) 6.53 Hz, 2),
2.83 (t, J ) 6.11 Hz, 2), 3.88 (s, 3), 6.44 (s, 1, OH), 6.73 (s, 1),
7.51 (s, 1); 13C NMR (75 MHz, CDCl3) δ 23.5, 29.2, 38.5, 56.1,
108.5, 113.8, 125.6, 140.1, 145.7, 150.8, 197.3; MS 192 [M+].

Conversion of 6-Acetoxy-7-methoxy-1,2,3,4-tetrahy-
dronaphthalene (3) to Tetralone 4 and 2-Acetoxy-3-
methoxynaphthalene. DDQ (454 mg, 2 mmol) in 4 mL of
dry dioxane and 3 (220 mg, 1 mmol) in 1 mL of aqueous
dioxane gave after 20 h and MPLC (EtOAc/hexanes 3:5) 4 (146
mg, 62%) and 2-acetoxy-3-methoxynaphthalene (50 mg, 23%).
4: mp 118.5-119.5 °C; IR (film, NaCl disk, cm-1) 1675, 1769;
1H NMR (300 MHz, CDCl3) δ 2.11 (m, 2), 2.28 (s, 3), 2.57 (t, J
) 6.53 Hz, 2), 2.91 (t, J ) 6.08 Hz, 2), 3.86 (s, 3), 6.74 (s, 1),
7.69 (s, 1); 13C NMR (75 MHz, CDCl3) δ 20.4, 23.2, 29.7, 38.4,
56.0, 111.3, 121.5, 126.1, 138.7, 144.5, 155.2, 168.8, 196.2; MS
234 [M+]. 2-Acetoxy-3-methoxynaphthalene: mp 114-116 °C;
IR 1764; 1H NMR δ 2.38 (s, 3), 3.95 (s, 3), 7.22 (s, 1), 7.36 (ddd,
J ) 8.14, 7.51, 1.24 Hz, 1), 7.44 (ddd, J ) 8.23, 7.55, 1.34 Hz,
1), 7.50 (s, 1), 7.73 (dd, J ) 7.43, 1.1 Hz, 1), 7.75 (dd, J ) 8.13,
1.0 Hz, 1); 13C NMR (75 MHz, CDCl3) δ 20.6, 55.8, 107.3, 120.3,
124.2, 126.1, 126.5, 127.2, 128.3, 132.5, 140.3, 150.2, 169.2;
HRMS calcd for C13H12O3 216.0786 [M+], found 216.0783.

Conversion of 6-Methoxy-7-acetoxy-1-tetralone (4) to
Tetralone 5. To 4 (117 mg, 0.5 mmol) in 7 mL of methanol
was added 3.5 mL of water and then 3.5 mL of saturated
aqueous NaHCO3. The resulting solution was stirred under
N2 at 25 °C for 17 h, acidified with aqueous HCl (1 M), and
extracted with CH2Cl2 (5 × 6 mL). The combined CH2Cl2

Figure 1. Tetrahydronaphthalene lignans â-conidendrin (R
) H) and dimethyl-â-conidendrin (R ) CH3) undergoing
dehydrogenation with DDQ in dioxane-5% water to dehydro-
conidendrin and dimethyldehydroconidendrin, respectively.

Scheme 1
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extracts were washed with brine and dried (MgSO4). Removal
of CH2Cl2 at reduced pressure gave 5 (94 mg, 98%): mp 151-
152 °C (lit.3 mp 148-152 °C); IR (film, NaCl disk, cm-1) 3369,
1665; 1H NMR (300 MHz, CDCl3) δ 2.09 (m, 2H), 2.57 (t, J )
6.54 Hz, 2), 2.86 (t, J ) 6.11 Hz, 2), 3.93 (s, 3), 5.68 (s, 1), 6.65
(s, 1), 7.55 (s, 1); 13C NMR (75 MHz, CDCl3) δ 23.6, 29.5, 38.6,
56.0, 109.7, 112.3, 126.6, 138.4, 144.5, 151.2, 197.2; MS 192
[M+].

Conversion of (+)-â-Conidendryl Alcohol (6) to Ox-
abicyclooctane 7. DDQ (150 mg, 0.66 mmol) in 8.5 mL of
dioxane and 6 (200 mg, 0.56 mmol) in 45 mL of dioxane gave
7 (117 mg, 59%) after a 5 h reaction period, processing, and
preparative TLC (EtOAc). 7: mp 167-169 °C; [R]25

D ) -30.95°
(c 1.58, acetone); IR 3370 (film, NaCl disk, cm-1); 1H NMR (300
MHz, MeOH-d4) δ 2.54 (m, 2), 3.38 (dd, J ) 10.92, 6.20 Hz, 1),
3.59 (dd, J ) 10.73, 9.17 Hz, 1), 3.75 (d, J ) 8.57 Hz, 1), 3.83
(s, 3), 3.94 (s, 3), 4.10 (dd, J ) 8.58, 5.94 Hz, 1), 4.18 (d, J )
1.65 Hz, 1), 4.84 (brs, 4), 6.50 (dd, J ) 8.14, 1.88 Hz, 1), 6.54
(s, 1), 6.72 (d, J ) 1.87 Hz, 1), 6.78 (d, J ) 8.12 Hz, 1), 6.88 (s,
1); 13C (75 MHz, CDCl3) δ 45.5, 46.6, 53.7, 56.4, 56.5, 62.8,
71.8, 79.4, 112.8, 113.8, 115.9, 118.7, 122.5, 130.3, 133.2, 138.2,
146.1, 147.7, 147.8, 148.8; HRMS calcd for C20H22O6 358.1416,
found 358.1417.

Conversion of (+)-Dimethy-â-conidendryl Alcohol (8)10

to Oxabicyclooctane 9 and Naphthalene 10. DDQ (2.32
g, 10.22 mmol) in 118 mL of CH2Cl2 and 8 (3.5 g, 9.18 mmol)
in 60 mL of CH2Cl2 gave 9 (2.48 g, 70%) after a 5.5 h reaction
period, processing, and MPLC (CH2Cl2/EtOAc 1:1). 9: mp 121-
122 °C; [R]22

D ) -6.7° (c 1.93, acetone); IR 3450 (film, NaCl
disk, cm-1); 1H NMR (300 MHz, CDCl3) δ 1.43 (br s, 2H), 2.55
(t, J ) 6.28 Hz, 2), 2.89 (m, 4), 3.22 (m, 1), 3.29 (m, 3), 3.43
(m, 2), 3.51 (s, 3), 3.52 (s, 3), 3.741 (s, 3), 3.745 (d, J ) 8.51
Hz, 2), 3.826 (s, 3), 3.833 (s, 3), 3.89 (s, 3), 3.90 (s, 3), 3.92 (s,

3), 4.22 (m, 2), 6.12 (s, 1), 6.16 (s, 1), 6.56 (d, J ) 1.76 Hz, 1),
6.66 (dd, J ) 1.95, 8.36 Hz, 1), 6.65 (s, 1), 6.67 (s, 1), 6.86 (d,
J ) 8.39 Hz, 1), 6.90 (d, J ) 8.31 Hz, 1), 7.32 (dd, J ) 8.31,
1.81 Hz, 1), 7.36 (d, J ) 1.59 Hz, 1); 13C NMR (75 MHz, CDCl3)
δ 37.73, 37.74, 38.15, 38.19, 52.94, 53.14, 55.73, 55.79, 55.92,
55.94, 56.06, 62.56, 62.58, 71.43, 71.48, 86.05, 86.14, 110.33,
110.41, 110.47, 110.63, 111.00, 111.97, 112.03, 119.29, 119.77,
126.94, 127.17, 131.62, 132.23, 135.09, 135.36, 146.90, 146.97,
147.70, 148.38, 148.54, 148.69; HRMS calcd for C22H26O6

386.1729, found 386.1732. Also obtained by MPLC was 10 (63
mg, 2%): mp 193-194 °C; 1H NMR (300 MHz, CDCl3) δ 3.71
(s, 3), 3.85 (s, 3), 3.98 (s, 3), 3.99 (s, 3), 4.60 (d, J ) 11.93 Hz,
1), 4.64 (d, J ) 11.96 Hz, 1), 4.91 (s, 2), 6.77 (s, 1), 6.89 (m, 2),
7.00 (dd, J ) 6.78, 1.90 Hz, 1), 7.13 (s, 1), 7.70 (s, 1); 13C NMR
(75 MHz) δ 55.65, 55.89, 55.92, 55.97, 60.82, 65.4, 106.1, 106.3,
111.2, 113.6, 122.5, 127.2, 128.6, 128.8, 131.4, 133.2, 135.7,
139.2, 148.3, 148.8, 149.7, 149.8; HRMS calcd for C22H24O6

384.1573, found 384.15601.
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